Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 431-439, 2014.
Article in English | WPRIM | ID: wpr-727703

ABSTRACT

The aim of the present study was to investigate whether ginsenoside-Rb2 (Rb2) can affect the secretion of catecholamines (CA) in the perfused model of the rat adrenal medulla. Rb2 (3~30 microM), perfused into an adrenal vein for 90 min, inhibited ACh (5.32 mM)-evoked CA secretory response in a dose- and time-dependent fashion. Rb2 (10 microM) also time-dependently inhibited the CA secretion evoked by DMPP (100 microM, a selective neuronal nicotinic receptor agonist) and high K+ (56 mM, a direct membrane depolarizer). Rb2 itself did not affect basal CA secretion (data not shown). Also, in the presence of Rb2 (50 microg/mL), the secretory responses of CA evoked by veratridine (a selective Na+ channel activator (50 microM), Bay-K-8644 (an L-type dihydropyridine Ca2+ channel activator, 10 microM), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 microM) were significantly reduced, respectively. Interestingly, in the simultaneous presence of Rb2 (10 microM) and L-NAME (an inhibitor of NO synthase, 30 microM), the inhibitory responses of Rb2 on ACh-evoked CA secretory response was considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of Rb2-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of Rb2 (10 microM) was greatly elevated compared to the corresponding basal released level. Collectively, these results demonstrate that Rb2 inhibits the CA secretory responses evoked by nicotinic stimulation as well as by direct membrane-depolarization from the isolated perfused rat adrenal medulla. It seems that this inhibitory effect of Rb2 is mediated by inhibiting both the influx of Ca2+ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of Ca2+ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade.


Subject(s)
Animals , Rats , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Medulla , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Membranes , Neurons , NG-Nitroarginine Methyl Ester , Nitric Oxide Synthase , Receptors, Nicotinic , Veins , Veratridine
2.
Journal of the Korean Society of Hypertension ; : 51-67, 2014.
Article in English | WPRIM | ID: wpr-35502

ABSTRACT

BACKGROUND: The present study was attempted to compare enalapril, an angiotensin-converting enzyme inhibitor with losartan an angiotensin II (Ang II) receptor blocker in the inhibitory effects on the secretion of catecholamines (CA) from the perfused model of the rat adrenal gland. METHODS: The adrenal gland was isolated and perfused with Krebs-bicarbonate. CA was measured directly by using the fluorospectrophotometer. RESULTS: Both enalapril and losartan during perfusion into an adrenal vein for 90 minutes inhibited the CA release evoked by acetylcholine (ACh), 1.1-dimethyl-4-phenyl piperazinium (DMPP, a selective Nn agonist), high K+ (a direct membrane-depolarizer), 3-(m-chloro-phenyl-carbamoyl-oxy-2-butynyl-trimethyl ammonium (McN-A-343, a selective M1 agonist), and Ang II in a time-dependent manner. Also, in the presence of enalapril or losartan, the CA release evoked by veratridine (an activator of voltage-dependent Na+ channels), 6-dimethyl-3-nitro-4-(2-trifluoromethyl-phenyl)-pyridine-5-carboxylate (BAY-K-8644, an L-type Ca2+ channel activator), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor) were significantly reduced. Based on the same concentration of enalapril and losartan, for the CA release evoked by ACh, high K+, DMPP, McN-A-343, Ang II, veratridine, BAY-K-8644, and cyclopiazonic acid, the following rank order of inhibitory potency was obtained: losartan > enalapril. In the simultaneous presence of enalapril and losartan, ACh-evoked CA secretion was more strongly inhibited compared with that of enalapril- or losartan-treated alone. CONCLUSIONS: Collectively, these results demonstrate that both enalapril and losartan inhibit the CA secretion evoked by activation of both cholinergic and Ang II type-1 receptors stimulation in the perfused rat adrenal medulla. When these two drugs were used in combination, their effects were enhanced, which may also be of clinical benefit. Based on concentration used in this study, the inhibitory effect of losartan on the CA secretion seems to be more potent than that of enalapril.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Acetylcholine , Adrenal Glands , Adrenal Medulla , Ammonium Compounds , Angiotensin II , Catecholamines , Cytoplasm , Dimethylphenylpiperazinium Iodide , Enalapril , Losartan , Perfusion , Veins , Veratridine
3.
Journal of the Korean Society of Hypertension ; : 23-38, 2013.
Article in English | WPRIM | ID: wpr-90655

ABSTRACT

BACKGROUND: The aim of this study was to examine whether PD 123319 (an angiotensin II type 2 [AT2] receptor antagonist) can influence the release of catecholamines (CA) from the perfused model of the rat adrenal medulla. METHODS: The adrenal gland was isolated by the modification of Wakade method, and perfused with normal Krebs-bicarbonate solution. The content of CA was measured using the fluorospectrophotometer. RESULTS: During perfusion of PD 123319 (range, 5 to 50 nM) into an adrenal vein for 90 minutes the CA secretory responses evoked by acetylcholine (ACh), high K+, 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), and McN-A-343 was dose- and time-dependently inhibited. Furthermore, loading with PD 123319 for 90 minutes also markedly inhibited the CA secretory responses evoked by 4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoro-methyl-phenyl)-pyridine-5-carboxylate (Bay-K-8644), cyclopiazonic acid, veratridine, and angiotensin II (Ang II). PD 123319 did not affect basal CA output. Simultaneous perfusion of PD 123319 and CGP 42112 perfused into an adrenal vein for 90 minutes rather more potently inhibited the CA seretory responses evoked by Ach, high K+, DMPP, Bay-K-8644, veratridine, and Ang II compared to the inhibitory effect by PD123319-treated alone. CONCLUSIONS: Taken together, these results show that PD 123319 inhibits the CA secretion evoked by both cholinergic and Ang II receptor stimulation from the perfused rat adrenal medulla. This inhibitory effect of PD 123319 seems to be exerted by blocking the influx of both Na+ and Ca2+ through their voltage-dependent channels into the rat adrenomedullary chromaffin cells as well as by reducing the Ca2+ release from its cytoplasmic calcium store, which may be relevant to AT2 receptor blockade. Based on these present data, it is thought that PD 123319 has different activity from previously known AT2 antagonist activity in the perfused adrenal medulla, and that AT2 receptors may be involved in the rat adrenomedullary CA secretion.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Acetylcholine , Adrenal Glands , Adrenal Medulla , Angiotensin II , Angiotensin II Type 2 Receptor Blockers , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Imidazoles , Indoles , Oligopeptides , Perfusion , Pyridines , Veins , Veratridine
4.
The Korean Journal of Physiology and Pharmacology ; : 99-109, 2013.
Article in English | WPRIM | ID: wpr-727483

ABSTRACT

The aim of this study was to determine whether fimasartan, a newly developed AT1 receptor blocker, can affect the CA release in the isolated perfused model of the adrenal medulla of spontaneously hypertensive rats (SHRs). Fimasartan (5~50 microM) perfused into an adrenal vein for 90 min produced dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM, a direct membrane depolarizer), DMPP (100 microM) and McN-A-343 (100 microM). Fimasartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with fimasartan (15 microM), the CA secretory responses evoked by Bay-K-8644 (10 microM, an activator of L-type Ca2+ channels), cyclopiazonic acid (10 microM, an inhibitor of cytoplasmic Ca(2+)-ATPase), and veratridine (100 microM, an activator of Na+ channels) as well as by angiotensin II (Ang II, 100 nM), were markedly inhibited. In simultaneous presence of fimasartan (15 microM) and L-NAME (30 microM, an inhibitor of NO synthase), the CA secretory responses evoked by ACh, high K+, DMPP, Ang II, Bay-K-8644, and veratridine was not affected in comparison of data obtained from treatment with fimasartan (15 microM) alone. Also there was no difference in NO release between before and after treatment with fimasartan (15 microM). Collectively, these experimental results suggest that fimasartan inhibits the CA secretion evoked by Ang II, and cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla. It seems that this inhibitory effect of fimasartan may be mediated by blocking the influx of both Na+ and Ca2+ through their ion channels into the rat adrenomedullary chromaffin cells as well as by inhibiting the Ca2+ release from the cytoplasmic calcium store, which is relevant to AT1 receptor blockade without NO release.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Angiotensin II , Biphenyl Compounds , Calcium , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Indoles , Ion Channels , Membranes , NG-Nitroarginine Methyl Ester , Pyrimidines , Rats, Inbred SHR , Tetrazoles , Veins , Veratridine
5.
Acta Physiologica Sinica ; (6): 433-443, 2012.
Article in Chinese | WPRIM | ID: wpr-333182

ABSTRACT

The objectives of this study were to investigate the effects of veratridine (VER) on persistent sodium current (I(Na.P)), Na(+)/Ca(2+) exchange current (I(NCX)), calcium transients and the action potential (AP) in rabbit ventricular myocytes, and to explore the mechanism in intracellular calcium overload and myocardial contraction enhancement by using whole-cell patch clamp recording technique, visual motion edge detection system, intracellular calcium measurement system and multi-channel physiological signal acquisition and processing system. The results showed that I(Na.P) and reverse I(NCX) in ventricular myocytes were obviously increased after giving 10, 20 μmol/L VER, with the current density of I(Na.P) increasing from (-0.22 ± 0.12) to (-0.61 ± 0.13) and (-2.15 ± 0.14) pA/pF (P < 0.01, n = 10) at -20 mV, and that of reverse I(NCX) increasing from (1.62 ± 0.12) to (2.19 ± 0.09) and (2.58 ± 0.11) pA/pF (P < 0.05, n = 10) at +50 mV. After adding 4 μmol/L tetrodotoxin (TTX), current density of I(Na.P) and reverse I(NCX) returned to (-0.07 ± 0.14) and (1.69 ± 0.15) pA/pF (P < 0.05, n = 10). Another specific blocker of I(Na.P), ranolazine (RAN), could obviously inhibit VER-increased I(Na.P) and reverse I(NCX). After giving 2.5 μmol/L VER, the maximal contraction rate of ventricular myocytes increased from (-0.91 ± 0.29) to (-1.53 ± 0.29) μm/s (P < 0.01, n = 7), the amplitude of contraction increased from (0.10 ± 0.04) to (0.16 ± 0.04) μm (P < 0.05, n = 7), and the baseline of calcium transients (diastolic calcium concentration) increased from (1.21 ± 0.08) to (1.37 ± 0.12) (P < 0.05, n = 7). After adding 2 μmol/L TTX, the maximal contraction rate and amplitude of ventricular myocytes decreased to (-0.86 ± 0.24) μm/s and (0.09 ± 0.03) μm (P < 0.01, n = 7) respectively. And the baseline of calcium transients reduced to (1.17 ± 0.09) (P < 0.05, n = 7). VER (20 μmol/L) could extend action potential duration at 50% repolarization (APD(50)) and at 90% repolarization (APD(90)) in ventricular myocytes from (123.18 ± 23.70) to (271.90 ± 32.81) and from (146.94 ± 24.15) to (429.79 ± 32.04) ms (P < 0.01, n = 6) respectively. Early afterdepolarizations (EADs) appeared in 3 out of the 6 cases. After adding 4 μmol/L TTX, APD(50) and APD(90) were reduced to (99.07 ± 22.81) and (163.84 ± 26.06) ms (P < 0.01, n = 6) respectively, and EADs disappeared accordingly in 3 cases. It could be suggested that: (1) As a specific agonist of the I(Na.P), VER could result in I(Na.P) increase and intracellular Na(+) overload, and subsequently intracellular Ca(2+) overload with the increase of reverse I(NCX). (2) The VER-increased I(Na.P) could further extend the action potential duration (APD) and induce EADs. (3) TTX could restrain the abnormal VER-induced changes of the above-mentioned indexes, indicating that these abnormal changes were caused by the increase of I(Na.P). Based on this study, it is concluded that as the I(Na.P) agonist, VER can enhance reverse I(NCX) by increasing I(Na.P), leading to intracellular Ca(2+) overload and APD abnormal extension.


Subject(s)
Animals , Rabbits , Acetanilides , Pharmacology , Action Potentials , Calcium , Metabolism , Myocardial Contraction , Myocytes, Cardiac , Cell Biology , Patch-Clamp Techniques , Piperazines , Pharmacology , Ranolazine , Sodium-Calcium Exchanger , Metabolism , Tetrodotoxin , Pharmacology , Veratridine , Pharmacology
6.
The Korean Journal of Physiology and Pharmacology ; : 241-248, 2010.
Article in English | WPRIM | ID: wpr-727793

ABSTRACT

The present sutdy aimed to determine whether olmesartan, an angiotensin II (Ang II) type 1 (AT1) receptor blocker, can influence the CA release from the isolated perfused model of the rat adrenal medulla. Olmesartan (5~50 micrometer) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM, a direct membrane-depolarizer), DMPP (100 micrometer) and McN-A-343 (100 micrometer). Olmesartan did not affect basal CA secretion. Also, in adrenal glands loaded with olmesartan (15 micrometer), the CA secretory responses evoked by Bay-K-8644 (10 micrometer, an activator of voltage-dependent L-type Ca2+ channels), cyclopiazonic acid (10 micrometer, an inhibitor of cytoplasmic Ca2+ -ATPase), veratridine (100 micrometer, an activator of voltage-dependent Na+ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150~300 micrometer), olmesartan rather enhanced the ACh-evoked CA secretion. Taken together, these results show that olmesartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by direct membrane depolarization from the rat adrenal medulla, but at high concentrations it rather potentiates the ACh-evoked CA secretion. It seems that olmesartan has a dual action, acting as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of olmesartan may be mediated by blocking the influx of both Na+ and Ca2+ into the rat adrenomedullary chromaffin cells as well as by inhibiting the Ca2+ release from the cytoplasmic calcium store, which is thought to be relevant to the AT1 receptor blockade, in addition to its enhancement on the CA secreton.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Angiotensin II , Calcium , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Imidazoles , Indoles , Membranes , Receptors, Nicotinic , Tetrazoles , Veins , Veratridine
7.
The Korean Journal of Physiology and Pharmacology ; : 229-239, 2009.
Article in English | WPRIM | ID: wpr-728730

ABSTRACT

The aim of the present study was to examine the effect of provinol, which is a mixture of polyphenolic compounds from red wine, on the secretion of catecholamines (CA) from isolated perfused rat adrenal medulla, and to elucidate its mechanism of action. Provinol (0.3~3 microgram/ml) perfused into an adrenal vein for 90 min dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, 100 micrometer) and McN-A-343 (a selective muscarinic M1 receptor agonist, 100 micrometer). Provinol itself did not affect basal CA secretion. Also, in the presence of provinol (1 microgram/ml), the secretory responses of CA evoked by Bay-K-8644 (a voltage-dependent L-type dihydropyridine Ca2+ channel activator, 10 microgram), cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 microgram) and veratridine (an activator of voltage-dependent Na+ channels, 10 microgram) were significantly reduced. Interestingly, in the simultaneous presence of provinol (1 microgram/ml) plus L-NAME (a selective inhibitor of NO synthase, 30 micrometer), the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclpiazonic acid recovered to the considerable extent of the corresponding control secretion in comparison with the inhibition of provinol-treatment alone. Under the same condition, the level of NO released from adrenal medulla after the treatment of provinol (3 microgram/ml) was greatly elevated in comparison to its basal release. Taken together, these data demonstrate that provinol inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the perfused rat adrenal medulla. This inhibitory effect of provinol seems to be exerted by inhibiting the influx of both calcium and sodium into the rat adrenal medullary cells along with the blockade of Ca2+ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of nitric oxide synthase.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Medulla , Calcium , Catecholamines , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , Neurons , NG-Nitroarginine Methyl Ester , Nitric Oxide , Nitric Oxide Synthase , Receptor, Muscarinic M1 , Receptors, Cholinergic , Sodium , Veins , Veratridine , Wine
8.
The Korean Journal of Physiology and Pharmacology ; : 327-335, 2009.
Article in English | WPRIM | ID: wpr-727516

ABSTRACT

The aim of this study was to determine whether losartan, an angiotensin II (Ang II) type 1 (AT1) receptor could influence the CA release from the isolated perfused model of the rat adrenal medulla. Losartan (5~50 micrometer) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high K+ (56 mM, a direct membrane depolarizer), DMPP (100 micrometer) and McN-A-343 (100 micrometer). Losartan failed to affect basal CA output. Furthermore, in adrenal glands loaded with losartan (15 micrometer) for 90 min, the CA secretory responses evoked by Bay-K-8644 (10 micrometer, an activator of L-type Ca2+ channels), cyclopiazonic acid (10 micrometer, an inhibitor of cytoplasmic Ca2+-ATPase), veratridine (100 micrometer, an activator of Na+ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations (150~300 micrometer), losartan rather enhanced the CA secretion evoked by ACh. Collectively, these experimental results suggest that losartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization from the rat adrenal medulla, but at high concentration it rather inhibits ACh-evoked CA secretion. It seems that losartan has a dual action, acting as both agonist and antagonist to nicotinic receptors of the rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of losartan may be mediated by blocking the influx of both Na+ and Ca2+ into the rat adrenomedullary chromaffin cells as well as by inhibiting the Ca2+ release from the cytoplasmic calcium store, which is thought to be relevant to the AT1 receptor blockade, in addition to its enhancement of the CA release.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Angiotensin II , Calcium , Chromaffin Cells , Cytoplasm , Dimethylphenylpiperazinium Iodide , Indoles , Losartan , Membranes , Receptors, Nicotinic , Veins , Veratridine
9.
The Korean Journal of Physiology and Pharmacology ; : 517-526, 2009.
Article in English | WPRIM | ID: wpr-727349

ABSTRACT

The present study was attempted to investigate whether polyphenolic compounds isolated from wine, which is brewed from Rubus coreanum Miquel (PCRC), may affect the release of catecholamines (CA) from the isolated perfused adrenal medulla of the spontaneously hypertensive rats (SHRs), and to establish its mechanism of action. PCRC (20~180 microgram/ml) perfused into an adrenal vein for 90 min relatively dose-dependently inhibited the CA secretory responses to ACh (5.32 mM), high K+ (56 mM), DMPP (100 micrometer) and McN-A-343 (100 micrometer). PCRC itself did not affect basal CA secretion (data not shown). Also, in the presence of PCRC (60 microgram/ml), the CA secretory responses to veratridine (a selective Na+ channel activator (10 micrometer), Bay-K-8644 (a L-type dihydropyridine Ca2+ channel activator, 10 micrometer), and cyclopiazonic acid (a cytoplasmic Ca2+ -ATPase inhibitor, 10 micrometer) were significantly reduced, respectively. In the simultaneous presence of PCRC (60 microgram/ml) and L-NAME (an inhibitor of NO synthase, 30 micrometer), the inhibitory responses of PCRC on the CA secretion evoked by ACh, high K+, DMPP, and Bay-K-8644 were considerably recovered to the extent of the corresponding control secretion compared with that of PCRC-treatment alone. The level of NO released from adrenal medulla after the treatment of PCRC (60 microgram/ml) was greatly elevated compared with the corresponding basal level. Taken together, these results demonstrate that PCRC inhibits the CA secretion from the isolated perfused adrenal medulla of the SHRs evoked by stimulation of cholinergic receptors as well as by direct membrane-depolarization. It seems that this inhibitory effect of PCRC is mediated by blocking the influx of calcium and sodium into the adrenal medullary chromaffin cells of the SHRs as well as by inhibition of Ca2+ release from the cytoplasmic calcium store at least partly through the increased NO production due to the activation of NO synthase.


Subject(s)
(4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Medulla , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , NG-Nitroarginine Methyl Ester , Nitric Oxide , Nitric Oxide Synthase , Polyphenols , Rats, Inbred SHR , Receptors, Cholinergic , Sodium , Veins , Veratridine , Wine
10.
The Korean Journal of Physiology and Pharmacology ; : 101-109, 2008.
Article in English | WPRIM | ID: wpr-728600

ABSTRACT

The aim of the present study was to examine the effects of ketamine, a dissociative anesthetics, on secretion of catecholamines (CA) secretion evoked by cholinergic stimulation from the perfused model of the isolated rat adrenal gland, and to establish its mechanism of action, and to compare ketamine effect with that of thiopental sodium, which is one of intravenous barbiturate anesthetics. Ketamine (30~300 micrometer), perfused into an adrenal vein for 60 min, dose- and time-dependently inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (a direct membrane- depolarizer, 56 mM), DMPP (a selective neuronal nicotinic NN receptor agonist, 100 micrometer) and McN-A-343 (a selective muscarinic M1 receptor agonist, 100 micrometer). Also, in the presence of ketamine (100 micrometer), the CA secretory responses evoked by veratridine (a voltage-dependent Na+ channel activator, 100 micrometer), Bay-K-8644 (an L-type dihydropyridine Ca2+ channel activator, 10 micrometer), and cyclopiazonic acid (a cytoplasmic Ca2+-ATPase inhibitor, 10 micrometer) were significantly reduced, respectively. Interestingly, thiopental sodium (100 micrometer) also caused the inhibitory effects on the CA secretory responses evoked by ACh, high K+, DMPP, McN-A-343, veratridine, Bay-K-8644, and cyclopiazonic acid. Collectively, these experimental results demonstrate that ketamine inhibits the CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors and the membrane depolarization from the isolated perfused rat adrenal gland. It seems likely that the inhibitory effect of ketamine is mediated by blocking the influx of both Ca2+ and Na+ through voltage-dependent Ca2+ and Na+ channels into the rat adrenal medullary chromaffin cells as well as by inhibiting Ca2+ release from the cytoplasmic calcium store, which are relevant to the blockade of cholinergic receptors. It is also thought that, on the basis of concentrations, ketamine causes similar inhibitory effect with thiopental in the CA secretion from the perfused rat adrenal medulla.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Anesthetics , Anesthetics, Dissociative , Barbiturates , Calcium , Catecholamines , Chromaffin Cells , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , Ketamine , Membranes , Neurons , Receptor, Muscarinic M1 , Receptors, Cholinergic , Thiopental , Veins , Veratridine
11.
The Korean Journal of Physiology and Pharmacology ; : 155-164, 2008.
Article in English | WPRIM | ID: wpr-728592

ABSTRACT

Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10~100micrometer) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high K+ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic Nn receptor agonist, 100micrometer) and McN-A-343 (a selective muscarinic M1 receptor agonist, 100micrometer) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30micrometer), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent Na+ channels, 100micrometer), Bay-K-8644 (a L-type dihydropyridine Ca2+ channel activator, 10micrometer), and cyclopiazonic acid (a cytoplasmic Ca2+ -ATPase inhibitor, 10micrometer) were significantly reduced. In the simultaneous presence of resveratrol (30micrometer) and L-NAME (an inhibitor of NO synthase, 30micrometer), the CA secretory evoked by ACh, high K+, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through Na+ and Ca2+ channels into the adrenomedullary cells as well as by blocking the release of Ca2+ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.


Subject(s)
Animals , Rats , (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester , Adrenal Glands , Adrenal Medulla , Calcium , Catecholamines , Cytoplasm , Dihydropyridines , Dimethylphenylpiperazinium Iodide , Indoles , Ions , Neurons , NG-Nitroarginine Methyl Ester , Nitric Oxide , Nitric Oxide Synthase , Perfusion , Receptor, Muscarinic M1 , Receptors, Cholinergic , Receptors, Nicotinic , Stilbenes , Veins , Veratridine
12.
Acta Physiologica Sinica ; (6): 169-174, 2005.
Article in English | WPRIM | ID: wpr-334176

ABSTRACT

Ectopic spontaneous activity originated from the injured dorsal root ganglion (DRG) neurons in rats was recorded through single dorsal root fiber. The firing patterns induced by veratridine and aconitine, inhibitors of inactivation gate of sodium channel operating on different binding sites, were compared. In the same neuron, veratridine (1.5 approximately 5.0 micromol/L) caused slow wave oscillations of interspike intervals (ISIs), while aconitine (10 approximately 200 micromol/L) caused tonic firing. Moreover, even if the background firing patterns were various and the reagent concentrations used were different, veratridine and aconitine still induced slow wave oscillations and tonic firing patterns, respectively. The results suggest that veratridine and aconitine induce different firing patterns in injured DRG neurons, which may relate to their inhibitory effects on different binding sites of the sodium channel.


Subject(s)
Animals , Female , Male , Rats , Aconitine , Pharmacology , Electrophysiological Phenomena , Physiology , Ganglia, Spinal , Wounds and Injuries , Neurons , Pathology , Physiology , Rats, Sprague-Dawley , Sodium Channel Agonists , Sodium Channels , Physiology , Veratridine , Pharmacology
13.
Chinese Journal of Applied Physiology ; (6): 140-144, 2005.
Article in Chinese | WPRIM | ID: wpr-287076

ABSTRACT

<p><b>AIM</b>To observe the effects of Ca2+ -activated K+ channel of primary cultured fetal SD rat cortex neurons in the veratridine triggered neuronal damage.</p><p><b>METHODS</b>The patch clamp technique of cell-attach and inside-out mode for these two kinds of single channel recordings were used.</p><p><b>RESULTS</b>Extracellular veratridine activated the Kca. In Ca2+ bath solution of cell-attach mode, Vp + 30 mV, when the concentration (micromol/L) of veratridine were 15,25,50 and 75, the open probabilities of the channel were 0.014 +/- 0.003, 0.085 +/- 0.010, 0.132 +/- 0.016 and 0.059 +/- 0.006 (P < 0.01) respectively. It appeared concentration-dependent within 50 micromol/L veratridine. In Ca2+ free bath solution of cell-attach mode, Vp = +50 mV, when the concentration (micromol/L) of veratridine were 15, 40,60 and 100, the open probabilities of the channel were 0.014 +/- 0.010, 0.113 +/- 0.006, 0.141 +/- 0.004 and 0.295 +/- 0.009 (P < 0.05) respectively. In the 6 cases of inside-out mode patch clamp, Vp = +40 mV, when the concentration of veratridine were 0, 25 micromol/L and 50 micromol/L, the open probabilities of the channel were 0.011 +/- 0.008, 0.010 +/- 0.010 and 0.012 +/- 0.007 (P > 0.05) respectively. There were no significant difference on open probabilities, average open/close times and amplitudes at different intracellular veratridine concentration.</p><p><b>CONCLUSION</b>Veratridine can affect the activation of the Kca channel through regulating the concentration of cytoplasmic free Ca2+. The opening of Kca activated by increase of intracellular Ca2+ during the early stage of anoxia may be a protection reaction of ischemic neurons.</p>


Subject(s)
Animals , Rats , Animals, Newborn , Calcium , Metabolism , Cells, Cultured , Neurons , Cell Biology , Physiology , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated , Metabolism , Rats, Sprague-Dawley , Veratridine , Pharmacology
14.
Acta Physiologica Sinica ; (6): 329-332, 2002.
Article in Chinese | WPRIM | ID: wpr-318991

ABSTRACT

Firing patterns of injured nerve fibers were recorded using the single-fiber firing recording technique. Under the same background firing pattern, three types of bursting were induced separately by EGTA, veratridine or high [Ca(2+)](o) in the same type of nerve fibers. The results suggest that different firing patterns are related to different stimuli, which means that each firing pattern carries corresponding neural information.


Subject(s)
Animals , Rats , Action Potentials , Calcium , Pharmacology , Egtazic Acid , Pharmacology , Nerve Fibers , Pathology , Veratridine , Pharmacology
15.
Acta Physiologica Sinica ; (6): 208-212, 2002.
Article in Chinese | WPRIM | ID: wpr-279310

ABSTRACT

Veratridine, a blocker of inactive gate of sodium channel, was used to perfuse L5 dorsal root ganglion (DRG) topically. Afferent activities of type A single fiber from these DRGs were recorded. It was found that after a 10-min bath of veratridine (1.8-3 micromol/L), some of the primary silent DRG neurons were triggered by touch or pressure on the receptive fields or by electrical stimulation of the sciatic nerve to produce high-frequency firing, which was termed triggered oscillation presenting a U-type of interspike intervals (ISI) or other types of oscillations. The longer the intervals between stimulating pulses, the more stimulating pulses were needed to trigger the oscillation. The oscillation, triggered by electric stimuli with different duration or patterns, had no significant difference in their patterns. The duration of the inhibitory period after a triggered oscillation was generally 30-90 s. It was also observed that this kind of triggered oscillation was induced by afferent pulses of the same neurons. These results suggest that triggered oscillation, which may contribute to the fit of triggered pain, can be produced in primary sensory neurons after application of veratridine.


Subject(s)
Animals , Female , Male , Rats , Action Potentials , Physiology , Ganglia, Spinal , Cell Biology , Neurons, Afferent , Physiology , Rats, Sprague-Dawley , Sodium Channel Blockers , Pharmacology , Veratridine , Pharmacology
16.
The Korean Journal of Physiology and Pharmacology ; : 503-510, 2001.
Article in English | WPRIM | ID: wpr-728780

ABSTRACT

Long-term treatment of cultured bovine adrenal medullary chromaffin (BAMC) cells with arachidonic acid (100 muM), angiotesnin II (100 nM), prostaglandin E2 (PGE2; 10 muM), veratridine (2 muM) or KCl (55 mM) for 24 hrs increased both norepinephrine and epinephrine levels in the supernatant. Pretreatment with staurosporine (10 nM), a protein kinase C (PKC) inhibitor, completely blocked increases of norepinephrine and epinephrine secretion induced by arachidonic acid, angiotensin II, PGE2, veratridine or KCl. In addition, K252a, another PKC inhibitor whose structure is similar to that of staurosporine, effectively attenuated both norepinephrine and epinephrine secretion induced by arachidonic acid. However, K252a did not affect the catecholamine secretion induced by angiotensin II, PGE2, veratridine or KCl. Our results suggest that staurosporine may inhibit long-term catecholamine secretion induced by various secretagogues in a mechanism other than inhibiting PKC signaling. Furthermore, long-term secretion of catecholamines induced by arachidonic acid may be dependent on PKC pathway.


Subject(s)
Angiotensin II , Arachidonic Acid , Catecholamines , Chromaffin Cells , Dinoprostone , Epinephrine , Norepinephrine , Protein Kinase C , Staurosporine , Veratridine
17.
Braz. j. med. biol. res ; 31(7): 937-41, jul. 1998. graf
Article in English | LILACS | ID: lil-212876

ABSTRACT

In the present study, we report that low concentrations of the glutamate ionotropic agonist kainate decreased the turnover of [3H]-phosphoinositides ([3H]-InsPs) induced by muscarinic receptors in the chick embryonic retina. When 100 muM carbachol was used, the estimated IC50 value for kainate was 0.2 muM and the maximal inhibition of ~50 percent was obtained with 1 muM or higher concentrations of the glutamatergic agonist. Our data also show that veratridine, a neurotoxin that increases the permeability of voltage-sensitive sodium channels, had no effect on [3H]-InsPs levels of the embryonic retina. However, 50 muM veratridine, but not 50 mM KCl, inhibited ~65 percent of the retinal response to carbachol. While carbachol increased [3H]-InsPs levels from 241.2 + 38.0 to 2044.5 + 299.9 cpm/mg protein, retinal response decreased to 861.6 + 113.9 cpm/mg protein when tissues were incubated with carbachol plus veratridine. These results suggest that the accumulation of phosphoinositides induced by activation of muscarinic receptors can be inhibited by the influx of Na+ ions triggered by activation of kainate receptors or opening of voltage-sensitive sodium channels in the chick embryonic retina.


Subject(s)
Animals , Chick Embryo , Carbachol/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Kainic Acid/pharmacology , Muscarinic Agonists/pharmacology , Phosphatidylinositols/metabolism , Receptors, Muscarinic/metabolism , Retina/embryology , Veratridine/pharmacology , Excitatory Amino Acid Agonists/metabolism , Glutamic Acid/pharmacology , Kainic Acid/metabolism , Potassium Chloride , Receptors, Muscarinic/drug effects , Retina/drug effects , Sodium Channels
18.
Braz. j. med. biol. res ; 30(12): 1467-70, Dec. 1997. graf
Article in English | LILACS | ID: lil-212593

ABSTRACT

Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 muM) on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 muM), a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 muM tetrodotoxin (a classical voltage-dependent Na+ channel blocker) and 3.0 muM flunarizine (a Na+ and Ca2+ channel blocker). These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro.


Subject(s)
Rats , Animals , Cell Survival/drug effects , In Vitro Techniques , Retinal Ganglion Cells/drug effects , Veratridine/pharmacology , Animals, Newborn , Rats, Inbred Strains , Retina/drug effects
19.
Korean Journal of Anesthesiology ; : 895-901, 1997.
Article in Korean | WPRIM | ID: wpr-171553

ABSTRACT

BACKGROUND: There are evidences that cytotoxic cell death occurs first by intracellular sodium entry and then followed by calcium accumulation during ischemic damage. To investigate the protective effect of hypothermia on the sodium induced or energy depletion induced cell death, we studied the relationship of incubation temperature with viability of the cultured astrocytoma cells. METHODS: The survival rate of astrocytoma cells under veratridine and/or iodoacetate(IAA)/carbonylcyanide m-chlorophenylhydrazone (CCCP) treatments was assessed. To measure the cell viability by veratridine or IAA/CCCP, 3-[4,5-dimethylthiazol-2yl]-2,5, diphenyl tetrazolium bromide (MTT) test using ELISA was utilized. Incubation temperature was varied to 27, 30, 37oC. RESULTS: Veratridine (30, 15, 3 M) known to increase intracellular sodium caused cell death. The survival rate was 88.8 1.3, 100.04 3.8, 105 4.5% of control, respectively at 1hr and 80.0 1.72, 90.9 1.68, 97.5 0.9%, of control respectively at 3 hrs after treatment. The survival rate with IAA/CCCP 1.5 mM/20 M or 150 M/2 M was 12.75 0.99, 32.85 2.93, respectively at 1 hr, and 3.1 0.36%, 15.48 1.11, respectively at 3 hrs. Veratridine addition to IAA/CCCP exacerbated cell death as compared with IAA/CCCP alone (6.6 0.43 vs 15.48 1.11). Lowering incubation temperature decreased cell death by veratridine or IAA/CCCP significantly: veratridine treated group revealed 80.0 1.72 % survival rate at 37oC and 94.1 4.0% at 27oC after 3 hrs incubation. IAA/CCCP (150 M/2 M) treated group showed 15.48 1.11% survival rate at 37oC and 39.96 5.20% survival rate at 27oC after 3 hrs incubation. CONCLUSIONS: Cell death caused by veratridine or IAA/CCCP was ameliorated by hypothermic incubation.


Subject(s)
Astrocytes , Astrocytoma , Calcium , Cell Death , Cell Survival , Electrolytes , Enzyme-Linked Immunosorbent Assay , Glycolysis , Hypothermia , Metabolism , Oxidative Phosphorylation , Sodium , Survival Rate , Veratridine
20.
Indian J Exp Biol ; 1992 Nov; 30(11): 1105-10
Article in English | IMSEAR | ID: sea-62010

ABSTRACT

The role of calcium in regulation of secretion of human chorionic gonadotropin (hCG) by first trimester human placental minces in vitro has been investigated. Depletion of calcium in the medium by addition of EGTA resulted in a drastic decrease in the levels of immunoreactive hCG in the medium with consequent of accumulation of hCG in the tissue. Addition of A 23187 which is a calcium ionophore resulted in a dose dose dependent increase in the hCG in the medium and this stimulatory response could not be observed in the absence of calcium. Use of lanthanum (a calcium antagonist) in place of calcium in the medium used resulted in a significant decrease in the levels of hCG in the medium. Addition of veratridine (a sodium channel activator) stimulated hCG secretion in a dose dependent manner. These results suggest that calcium is essential for normal secretion of hCG by human placenta.


Subject(s)
Calcimycin/pharmacology , Calcium/metabolism , Chorionic Gonadotropin/metabolism , Female , Humans , Kinetics , Lanthanum/pharmacology , Placenta/drug effects , Pregnancy , Pregnancy Trimester, First , Veratridine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL